Factores biopsicosociales de los trastornos del espectro esquizofrénico

Autores/as

  • Viviana Alexandra Carrera Panchana Universidad Católica de Cuenca

DOI:

https://doi.org/10.29018/issn.2588-1000vol5iss39.2021pp205-223

Palabras clave:

etiología, Etiología, trastornos del espectro esquizofrénico, esquizofrenia, factores biológicos, factores psicológicos, factores sociales

Resumen

En la etiología de los trastornos del espectro de la esquizofrenia (TEE) se han implicado a factores biológicos, psicológicos y sociales, demostrándose que la existencia de variantes genéticas, alteraciones en neurotransmisores como la dopamina y el glutamato, factores de riesgo prenatales y perinatales, entre otros, contribuirían al incremento del riesgo de este tipo de alteraciones mentales. El objetivo del presente artículo es identificar los factores biopsicosociales implicados, actualmente, en la etiología de los TEE, para lo cual se realizaron búsquedas en las bases de datos científicas Scopus y Web of Science, seleccionando 65 artículos publicados entre los años 2015 y 2020. Entre las palabras claves se consideraron: Etiology of schizophrenia spectrum disorder, psychological factors of schizophrenia spectrum disorder y social factors of schizophrenia spectrum disorder. En los estudios revisados se pudo evidenciar la predominancia del enfoque biológico, en particular, de aquellos de corte genético enfocados en la identificación de nuevos loci, la implicación de nuevas variantes genéticas, mutaciones, proteínas y moléculas; así como también, un reducido número de investigaciones que abordan los factores psicológicos y sociales, entre ellos el trauma infantil, el estrés de la gestante, la discriminación, entre otros. Se concluye que las interacciones entre genes y ambiente serían determinantes en la etiología de los TEE.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alkelai, A., Shohat, S., Greenbaum, L., Schechter, T., Draiman, B., Chitrit-Raveh, E., Rienstein, S., Dagaonkar, N., Hughes, D., Aggarwal, V., Heinzen, E., Shifman, S., Goldstein, D., & Kohn, Y. (2020). Expansion of the GRIA2 phenotypic representation: a novel de novo loss of function mutation in a case with childhood onset schizophrenia. Journal of Human Genetics, 66(3), 339–343. https://doi.org/10.1038/s10038-020-00846-1

Álvarez, M.-J., Masramon, H., Peña, C., Pont, M., Gourdier, C., Roura-Poch, P., & Arrufat, F. (2015). Cumulative Effects of Childhood Traumas: Polytraumatization, Dissociation, and Schizophrenia. Community Mental Health Journal, 51(1), 54–62. https://doi.org/10.1007/s10597-014-9755-2

American Psychiatric Association. (2014). Manual Diagnóstico y Estadístico de los Trastornos Mentales DSM-5. Editorial Médica Panamericana.

Ardalan, M., Chumak, T., Vexler, Z., & Mallard, C. (2019). Sex-Dependent Effects of Perinatal Inflammation on the Brain: Implication for Neuro-Psychiatric Disorders. International Journal of Molecular Sciences, 20(9), 2270. https://doi.org/10.3390/ijms20092270

Baba, M., Yokoyama, K., Seiriki, K., Naka, Y., Matsumura, K., Kondo, M., Yamamoto, K., Hayashida, M., Kasai, A., Ago, Y., Nagayasu, K., Hayata-Takano, A., Takahashi, A., Yamaguchi, S., Mori, D., Ozaki, N., Yamamoto, T., Takuma, K., Hashimoto, R.,…Nakazawa, T. (2019). Psychiatric-disorder-related behavioral phenotypes and cortical hyperactivity in a mouse model of 3q29 deletion syndrome. Neuropsychopharmacology. 44(12), 2125-2135. https://doi.org/10.1038/s41386-019-0441-5

Balestrieri, E., Matteucci, C., Cipriani, Ch., Grelli, S., Ricceri, L., Calamandrei, G., & Vallebona, P. (2019). Endogenous Retroviruses Activity as a Molecular Signature of Neurodevelopmental Disorders. International Journal of Molecular Sciences, 20(23), 6050. https://doi.org/10.3390/ijms20236050

Bassett, A., McGillivray, B., Jones, B., & Pantzar, J. (1988). Partial trisonomy chromosome 5 cosegregating with schizophrenia. Lancet, 1(8589), 799–801. https://doi.org/10.1016/s0140-6736(88)91660-1

Berretz, G., Wolf, O., Güntürkün, O., & Ocklenburg, S. (2020). Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress?. Cortex 125, 215–232. https://doi.org/10.1016/j.cortex.2019.12.019

Bergdolt, L., & Dunaevsky, A. (2018). Brain changes in a maternal Immune activation model of neurodevelopmental brain disorders. Progress in Neurobiology, 175, 1-19. https://doi.org/10.1016/j.pneurobio.2018.12.002

Breen, M. S., Wingo, A. P., Koen, N., Donald, K. A., Nicol, M., Zar, H. J., … Stein, D. J. (2018). Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes. Brain, Behavior, and Immunity, 73, 320-330. https://doi.org/10.1016/j.bbi.2018.05.016

Bryzgalov, L. O., Korbolina, E. E., Brusentsov, I. I., Leberfarb, E. Y., Bondar, N. P., & Merkulova, T. I. (2018). Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neuroscience, 19, 41-46. https://doi.org/10.1186/s12868-018-0414-3

Bowden, S., Costa-Dookham, K., Leavitt, D., Agarwal, S., & Hanh, M., (2020). First episode psychosis: the commensal gut microbiota perspective. University of Toronto Medical Journal, 97(3), 22-28. http://utmj.org/index.php/UTMJ/article/view/1268/1260

Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M. A., Babulas, V., & Susser, E. (2004). Serologic evidence for prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry, 61, 774–780. https://doi.org/10.1001/archpsyc.61.8.774

Brown, A. S. (2011). The environment and susceptibility to schizophrenia. Progress in Neurobiology, 93(1), 23–58. https://doi.org/10.1016/j.pneurobio.2010.09.003

Brown, A. S., & Meyer, U. (2018). Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. American Journal of Psychiatry, 175(11), 1073–1083. https://doi.org/10.1176/appi.ajp.2018.17121311

Buka, S. L., Tsuang, M. T., Torrey, E. F., Klebanoff, M. A., Bernstein, D., & Yolken, R. H. (2001). Maternal infections and subsequent psychosis among offspring. Archives of General Psychiatry, 58(11), 1032–1037. https://doi.org /0.1001/archpsyc.58.11.1032

Burmistrova A.L., Filippova Y.Y. (2020). Congruency and phenotypic plasticity of immune and nervous systems in children with autism spectrum disorders compared to schizophrenia spectrum disorders. Medical Immunology, 22(4), 703-716. https://doi.org/10.15789/1563-0625-CAP-1968

Calabrese, V., Giordano, J., Crupi, R., Di Paola, R., Ruggieri, M., Bianchini, R., Ontario, M., Cuzzocrea, S., & Calabrese, E. (2016). Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. Journal of Neuroscience Research, 95(5), 1182–1193. https://doi.org/10.1002/jnr.23967

Caspi, Y., Brouwer, R. M., Schnack, H. G., van de Nieuwenhuijzen, M. E., Cahn, W., Kahn, R. S., Niessen, W.J., van der Lugt, A., & Pol, H. H. (2020). Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study. NeuroImage, 220, 116842. https://doi.org/10.1016/j.neuroimage.2020.116842

Cheng, S., Guan, F., Ma, M., Zhang, L., Cheng, B., Qi, X., Liang, C., Li, P., Kafle, O. P., Wen, Y., & Zhang, F. (2020). An atlas of genetic correlations between psychiatric disorders and human blood plasma proteome. European psychiatry: the journal of the Association of European Psychiatrists, 63(1), e17. https://doi.org/10.1192/j.eurpsy.2019.6

Coley, A. A., & Gao, W.J. (2018). PSD95: A synaptic protein implicated in schizophrenia or autism? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 82, 187–194. https://doi.org/10.1016/j.pnpbp.2017.11.016

Debnath, M., Berk, M., Leboyer, M., & Tamouza, R. (2018). The MHC/HLA Gene Complex in Major Psychiatric Disorders: Emerging Roles and Implications. Current Behavioral Neuroscience Reports, 5(2), 179–188. https://doi.org/10.1007/s40473-018-0155-8

De Sena Cortabitarte, A., Degenhardt, F., Strohmaier, J., Lang, M., Weiss, B., Roeth, R., Giegling, I., Heilmann-Heimbach, S., Hofmann, A., Rujesc, D., Fischer, C., Rietschel, M., Nöthen, M.M., Rappold, G. A., & Berkel, S. (2017). Investigation of SHANK3 in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174(4), 390–398. https://doi.org/10.1002/ajmg.b.32528

DiLalla, L. F., McCrary, M., & Diaz, E. (2017). A review of endophenotypes in schizophrenia and autism: The next phase for understanding genetic etiologies. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 175(3), 354–361. https://doi.org/10.1002/ajmg.c.31566

Engemann, K., Pedersen, C.B., Arge, L., Tsirogiannis, C., Mortensen, P.B., & Svenning, J-C., (2019). Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. PNAS, 116(11) 5188-5193 https://doi.org/10.1073/pnas.1807504116

Ehlinger, D. G., & Commons, K. G. (2017). Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities. European Journal of Neuroscience, 46(8), 2416–2425. https://doi.org/10.1111/ejn.13707

Fekih‐Romdhane, F., Nsibi, T., Sassi, H., & Cheour, M. (2020). Link between childhood trauma and psychotic‐like experiences in non‐affected siblings of schizophrenia patients: A case‐control study. Early Intervention in Psychiatry, 1-13. https://doi.org/10.1111/eip.13054

Gibson, L. E., Alloy, L. B., & Ellman, L. M. (2016). Trauma and the psychosis spectrum: A review of symptom specificity and explanatory mechanisms. Clinical Psychology Review, 49, 92–105. https://doi.org/10.1016/j.cpr.2016.08.003

Giordano, G. N., Ohlsson, H., Sundquist, K., Sundquist, J., & Kendler, K. S. (2015). The association between cannabis abuse and subsequent schizophrenia: a Swedish national co-relative control study. Psychological Medicine, 45(02), 407–414. https://doi.org/10.1017/s0033291714001524

Glessner, J. T., Li, J., Wang, D., March, M., Lima, L., Desai, A., Hadley, D., Kao, Ch., Gur, R., Cohen, N., Sleiman, P., Li, Q., Hakonarson, H., & the Janssen-CHOP Neuropsychiatric Genomics Working Group (2017). Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Medicine, 9(1), 1-11. https://doi.org/10.1186/s13073-017-0494-1

Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences, 58(1), 199–205. https://doi.org/10.1073/pnas.58.1.199

Guloksuz, S., Pries, L., Delespaul, P., Kenis, G., Luykx, J. J., Lin, B. D., Richards, A., Akdede, B., Binbay, T., Altinyazar, V., Yalincetin, B., Gümüs- Akay, G., Cihan, B., Soygür, H., Ulaş, H., Cankurtaran, E., Kaymak, S. U., Mihaljevic, M. M., Petrovic, S. A., … van Os, J. (2019). Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study. World Psychiatry, 18(2), 173–182. https://doi.org/10.1002/wps.20629

Gur, R. E., Bassett, A. S., McDonald-McGinn, D. M., Bearden, C. E., Chow, E., Emanuel, B. S., Owen, M., Swillen, A., Van den Bree, M., Vermeesch, J., Vorstman, J.A.S., Warren, S., Lehner, T., Morrow, B., & The International 22q11.2 Deletion Syndrome Brain Behavior Consortium (2017). A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Molecular Psychiatry, 22(12), 1664–1672. https://doi.org/10.1038/mp.2017.161

Harper, S., Towers-Evans, H., & MacCabe, J. (2015). The aetiology of schizophrenia: what have the Swedish Medical Registers taught us?.Social Psychiatry and Psychiatric Epidemiology, 50(10), 1471–1479. https://doi.org/10.1007/s00127-015-1081-7

Halguin, R. & Krauss, S. (2009). Psicología de la anormalidad. McGraw Hill.

Hammerschlag, A. R., de Leeuw, C. A., Middeldorp, C. M., & Polderman, T. J. C. (2019). Synaptic and brain-expressed gene sets relate to the shared genetic risk across five psychiatric disorders. Psychological Medicine, 50(10), 1695- 1705. https://doi.org/10.1017/s0033291719001776

Hare, E. (1975). Season of birth in schizophrenia and neurosis. American Journal of Psychiatry, 132(11), 1168–1171. https://doi.org/10.1176/ajp.132.11.1168

Hawi, Z., Tong, J., Dark, C., Yates, H., Johnson, B., & Bellgrove, M. A. (2017). The role of cadherin genes in five major psychiatric disorders: A literature update. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 177(2), 168–180. https://doi.org/10.1002/ajmg.b.32592

Hjelmervik, H., Craven, A. R., Sinceviciute, I., Johnsen, E., Kompus, K., Bless, J. J., Kroken, R. A., Løberg, E. M., Ersland, L., Grüner, R., & Hugdahl, K. (2020). Intra-Regional Glu-GABA vs Inter-Regional Glu-Glu Imbalance: A 1H-MRS Study of the Neurochemistry of Auditory Verbal Hallucinations in Schizophrenia. Schizophrenia Bulletin, 46(3), 633-642. https://doi.org/10.1093/schbul/sbz099

Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J., & Dolphin, A. C. (2015). Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 134, 36–54. https://doi.org/10.1016/j.pneurobio.2015.09.002

Honda, S., Matsumoto, M., Tajinda, K., & Mihara, T. (2020). Enhancing Clinical Trials Through Synergistic Gamma Power Analysis. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00537

Imamura, A., Morimoto, Y., Ono, S., Kurotaki, N., Kanegae, S., Yamamoto, N., Kinoshita, H., Tsujita, T., Okazaki, Y., & Ozawa, H. (2020). Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. Journal of Neural Transmission. 127(11),1501-1515. https://doi.org/10.1007/s00702-020-02188-w

Ishizuka, K., Yoshida, T., Kawabata, T., Imai, A., Mori, H., Kimura, H., Inada, T., Okahisa, Y., Egawa, J., Usami, M., Kushima, I., Morikawa, M., Okada, T., Ikeda, M., Branko, A., Mori, D., Someya, T., Iwata, N., Ozaki, N. (2020). Functional characterization of rare NRXN1 variants identified in autism spectrum disorders and schizophrenia. Journal of Neurodevelopmental Disorders, 12(25), 1-16. https://doi.org/10.1186/s11689-020-09325-2

Janickova, L. & Schwaller, B. (2020). Parvalbumin-deficiency accelerates the age-dependent ROS production in Pvalb neurons in vivo: link to neurodevelopmental disorders. Frontiers in Cellular Neuroscience. 14:286. https://doi.org/10.3389/fncel.2020.571216

Jaudon, F., Thalhammer, A., & Cingolani, L. A. (2020). Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. European Journal of Neuroscience. 10.1111/ejn.14859. Advance online publication. https://doi.org/10.1111/ejn.14859

Jensen, P. (2003). Esquizofrenia, genética y complejidad. Actualidades en Psicología, 19(106), 139-14. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S0258-64442003000100008&lng=pt&tlng=es.

Kilinc, M., Creson, T., Rojas, C., Aceti, M., Ellegood, J., Vaissiere, T., Lerch, J. P., & Rumbaugh, G. (2018). Species-conserved SYNGAP1 phenotypes associated with neurodevelopmental disorders. Molecular and Cellular Neuroscience. 91, 140-150. https://doi.org/10.1016/j.mcn.2018.03.008

Kobayashi, M., Hayashi, Y., Fujimoto, Y., & Matsuoka, I. (2018). Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neuroscience Letters, 683, 82–88. https://doi.org/10.1016/j.neulet.2018.06.050

Köhler-Forsberg, O., Petersen, L., Gasse, C., Mortensen, P. B., Dalsgaard, S., Yolken, R. H., Mors, O., & Benros, M. E. (2018). A Nationwide Study in Denmark of the Association Between Treated Infections and the Subsequent Risk of Treated Mental Disorders in Children and Adolescents. JAMA Psychiatry, 76(3), 271–279 https://doi.org/10.1001/jamapsychiatry.2018.3428

Lamonica, J. M., & Zhou, Z. (2019). Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Current Opinion in Genetics & Development, 55, 76–81. https://doi.org/10.1001/10.1016/j.gde.2019.06.009

Lange, C., Huber, C. G., Fröhlich, D., Borgwardt, S., Lang, U. E., & Walter, M. (2017). Modulation of HPA axis response to social stress in schizophrenia by childhood trauma. Psychoneuroendocrinology, 82, 126–132. https://doi.org/10.1016/j.psyneuen.2017.03.027

Latalova, K., Sery, O., Hosakova, K., & Hosak, L. (2020). Gene-Environment Interactions in Major Mental Disorders in the Czech Republic. Neuropsychiatric disease and treatment, 16, 1147–1156. https://doi.org/10.2147/NDT.S238522

Lemvigh, C. K., Brouwer, R. M., Pantelis, C., Jensen, M. H., Hilker, R. W., Legind, C. S., Anhøj, S. J., Robbins, T. W., Sahakian, B. J., Glenthøj, B. Y., & Fagerlund, B. (2020). Heritability of specific cognitive functions and associations with schizophrenia spectrum disorders using CANTAB: a nation-wide twin study. Psychological Medicine, 1–14. Advance online publication. https://doi.org/10.1017/s0033291720002858

Lee, S.-E., Kim, J. A., & Chang, S. (2018). nArgBP2-SAPAP-SHANK, the core postsynaptic triad associated with psychiatric disorders. Experimental & Molecular Medicine, 50(4), 1-9. https://doi.org/10.1038/s12276-017-0018-5

Lesh, T. A., Careaga, M., Rose, D. R., McAllister, A. K., Van de Water, J., Carter, C. S., & Ashwood, P. (2018). Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. Journal of Neuroinflammation, 15(1), 1-11. https://doi.org/10.1186/s12974-018-1197-2

Li, S., Kumar T, P., Joshee, S., Kirschstein, T., Subburaju, S., Khalili, J. S., Kloepper, J., Du, C., Elkhal, A., Szabó, G., Jain, R. K., Köhling, R., & Vasudevan, A. (2018). Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Research, 28(2), 221–248. https://doi.org/10.1038/cr.2017.135

Li, Y., Wang, R., Qiao, N., Peng, G., Zhang, K., Tang, K., Han, J. J., & Jing, N.. (2017). Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells. Journal of Biological Chemistry, 292(48), 19590–19604. https://doi.org/10.1074/jbc.m117.796383

Lipner, E., Murphy, S. K., & Ellman, L. M. (2019). Prenatal Maternal Stress and the Cascade of Risk to Schizophrenia Spectrum Disorders in Offspring. Current psychiatry reports, 21(10), 99. https://doi.org/10.1007/s11920-019-1085-1

Liu, J., Chua, J. J., Chong, S. A., Subramaniam, M., & Mahendran, R. (2020). The impact of emotion dysregulation on positive and negative symptoms in schizophrenia spectrum disorders: A systematic review. Journal of clinical psychology, 76(4), 612–624. https://doi.org/10.1002/jclp.22915

Lopez, D., Altamirano, O., & Weisman de Mamani, A. (2020). The association between perceived racial discrimination and subclinical symptoms of psychosis. Journal of mental health, 1–8. Advance online publication. https://doi.org/10.1080/09638237.2020.1793120

Louchart - de la Chapelle, S., Nkam, I., & Houy, E., Belmont, A., Ménard, J., Roussignol, A., & Siwek, O., Mezerai, M., Guillermou, M., Fouldrin, G., Levillain, D., Dollfus, S., Campion, D., & Thibaut, F. (2005). A Concordance Study of Three Electrophysiological Measures in Schizophrenia. The American Journal of Psychiatry. 162(3), 466-474. https://doi.org/10.1176/appi.ajp.162.3.466

Magdalon, J., Mansur, F., Teles E Silva, A. L., de Goes, V. A., Reiner, O., & Sertié, A. L. (2020). Complement System in Brain Architecture and Neurodevelopmental Disorders. Frontiers in neuroscience, 14, 23.https://doi.org/10.3389/fnins.2020.00023

Marshall, C.R., Howrigan, D.P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D.S., Antaki, D., Shetty, A., Holmans, P.A., Pinto, D., Gujral, M., Brandler, W.M., Malhotra, D., Wang, Z., Fajarado, K.V.F., Maile, M.S., Ripke, S., Agartz, I., Albus, M.,…CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium. (2016). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49(1), 27–35. https://doi.org/10.1038/ng.3725

Minakova, E., & Warner, B. B. (2018). Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Research. 110(20), 1539-1550. https://doi.org/10.1002/bdr2.1416

Misiak, B., Stramecki, F., Gawęda, Ł., Prochwicz, K., Sąsiadek, M. M., Moustafa, A. A., & Frydecka, D. (2017). Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: a Systematic Review. Molecular Neurobiology, 55(6), 5075–5100. https://doi.org/10.1007/s12035-017-0708-y

Morris, Ch. & Maisto, A. (2005). Psicología. Pearson Educación.

Mortensen, P. B., Nørgaard-Pedersen, B., Waltoft, B. L., Sørensen, T. L., Hougaard, D., Torrey, E. F., & Yolken, R. H. (2007). Toxoplasma gondii as a Risk Factor for Early Onset Schizophrenia: Analysis of Filter Paper Blood Samples Obtained at Birth. Biological Psychiatry, 61(5), 688- 693. https://doi.org/10.1016/j.biopsych.2006.05.024

Nakazawa, T., Hashimoto, R., Takuma, K., & Hashimoto, H. (2019). Modeling of psychiatric disorders using induced pluripotent stem cell-related technologies. Journal of Pharmacological Sciences, 140(4), 321–324. https://doi.org/10.1016/j.jphs.2019.06.002

Newson, J. J., Hunter, D., & Thiagarajan, T. C. (2020). The Heterogeneity of Mental Health Assessment. Frontiers in Psychiatry, 11, 1-24. https://doi.org/10.3389/fpsyt.2020.00076

Niarchou, M., Moore, T. M., Tang, S. X., Calkins, M. E., McDonald-McGuinn, D. M., Zackai, E. H., Emanuel, B.S., Gur, R.C., & Gur, R. E. (2017). The dimensional structure of psychopathology in 22q11.2 Deletion Syndrome. Journal of Psychiatric Research, 92, 124–131. https://doi.org/10.1016/j.jpsychires.2017.04.006

Ohi, K., Nishizawa, D., Shimada, T., Kataoka, Y., Hasegawa, J., Shioiri, T., Kawasaki, Y., Hashimoto, R., & Ikeda, K. (2020). Polygenetic Risk Scores for Major Psychiatric Disorders Among Schizophrenia Patients, Their First-Degree Relatives and Healthy Subjects. International Journal of Neuropsychopharmacology, 23(3), 157-164. https://doi.org/10.1093/ijnp/pyz073

Ojeda, N., Peña, J., Segarra, R., Sánchez, P., Eguíluz, I., Elizagárate, E., Gutiérrez, M., & Ezcurra, J. (2009). La predicción del diagnóstico de esquizofrenia. El rol de la Neurocognición en el primer episodio psicótico. Universidad de Deusto.

Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. The Lancet, 388(10039), 86–97. https://doi.org/10.1016/s0140-6736(15)01121-6

Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S.E., Bishop, S., Cameron, D., Hamshere, M.L., Han, J., Hubbard, L., Lynham, A., Mantripragada, K., Rees, E., MacCabe, J.H., McCarroll, S.A., Baune, B.T., Breen, G.,…Walters JTR. (2018). Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 50(3), 381–389. https://doi.org/10.1038/s41588-018-0059-2

Portin, P., & Alanen, Y. O. (1997). A critical review of genetic studies of schizophrenia. II. Molecular genetic studies. Acta Psychiatrica Scandinavica, 95(2), 73–80. https://doi.org/10.1111/j.1600-0447.1997.tb00377.x

Rajarajan, P., Borrman, T., Liao, W., Schrode, N., Flaherty, E., Casiño, C., Powell, S., Yashaswini, C., LaMarca, E.A., Kassim, B., Javidfar, B., Espeso-Gil, S., Li, A., Won, H., Geschwind, D.H., Ho, S.M., MacDonald, M., Hoffman, G.E., Roussos, P.,…Akbarian, S. (2018). Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 362(6420), eaat4311. https://doi.org/10.1126/science.aat4311

Riaza, M. (2015). Implicaciones pronósticas de la sintomatología afectiva en pacientes del espectro esquizofrénico. [tesis doctoral, Universitad Complutense de Madrid]. Repositorio Eprints Complutense. http://eprints.ucm.es/41301/1/T38428.pdf

Riecher-Rössler, A., Butler, S., & Kulkarni, J. (2018). Sex and gender differences in schizophrenic psychoses—a critical review. Archives of Women’s Mental Health, 21, 627–648. https://doi.org/10.1007/s00737-018-0847-9

Ruiz-Vargas, J. M. (Ed.). (1984). Esquizofrenia: un enfoque cognitivo. Alianza Editorial.

Sarason, I., Sarason, B. (2006). Psicopatología: Psicología anormal, el problema de la conducta inadaptada. Pearson Educación.

Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., Genovese, G., Rose, S. A., Handsaker, R. E., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., & McCarroll, S. A. (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589), 177–183. https://doi.org/10.1038/nature16549

Shevlin, M., McElroy, E., Christoffersen, M. N., Elklit, A., Hyland, P., & Murphy, J. (2016). Social, familial and psychological risk factors for psychosis: A birth cohort study using the Danish Registry System. Psychosis, 8(2), 95–105. https://doi.org/10.1080/17522439.2015.1113306

Skogstrand, K., Hagen, C. M., Borbye-Lorenzen, N., Christiansen, M., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Werge, T., Børglum, A., Mors, O., Nordentoft, M., Mortensen, P. B., & Hougaard, D. M. (2019). Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Translational Psychiatry, 9(1), 1-9. https://doi.org/10.1038/s41398-019-0587-2

Sørensen, H. J., Nielsen, P. R., Pedersen, C. B., & Mortensen, P. B. (2011). Association between prepartum maternal iron deficiency and offspring risk of schizophrenia: population-based cohort study with linkage of Danish national registers. Schizophrenia bulletin, 37(5), 982-7. https://doi.org/10.1093/schbul/sbp167

Srinivasan, S., Bettella, F., Mattingsdal, M., Wang, Y., Witoelar, A., Schork, A. J., Thompson, W., Zuber, V., The Schizophrenia Working Group of the Psychiatric Genomics Consortium, The International Headache Genetics Consortium, Winsvold, B., Zwart, J.A., Collier, D.A., Desikan, R.S., Melle, I., Werge, T., Dale, A. Djurovic, S., Andreassen, O. A. (2016). Genetic Markers of Human Evolution Are Enriched in Schizophrenia. Biological Psychiatry, 80(4), 284–292. https://doi.org/10.1016/j.biopsych.2015.10.009

Statucka, M., & Walder, D. J. (2017). Facial affect recognition and social functioning among individuals with varying degrees of schizotypy. Psychiatry Research, 256, 180–187. https://doi.org/10.1016/j.psychres.2017.06.040

Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P. H., Ingason, A., Steinberg, S., Fossdal, R., Sigurdsson, E., Sigmundsson, T., Buizer-Voskamp, J., Hansen, T., Jakobsen, K., Muglia, P., Francks, C., Matthews, P., Gylfason, A., Halldorsson, B., Gudbjartsson, D., Thorgeirsson, T.,…Stefansson, K. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455(7210), 232–236. https://doi.org/10.1038/nature07229

Steullet, P., Cabungcal, J.-H., Coyle, J., Didriksen, M., Gill, K., Grace, A. A., Hensch, T.K., LaMantia, A.S., Lindemann, L., Maynard, T.M., Meyer, U., Morishita, H., O'Donnell, P., Puhl, M., Cuenod, M., & Do, K. Q. (2017). Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 22(7), 936–943. https://doi.org/10.1038/mp.2017.47

Tamouza, R., Krishnamoorthy, R., & Leboyer, M. (2020). Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain, Behavior, and Immunity, 91, 731-739. https://doi.org/10.1016/j.bbi.2020.09.033

Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi:10.1016/j.medcli.2010.01.015

Van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O.A., Agartz, I., Westlye, L.T., Haukyik, U. K., Dale, A.M., Melle, I., Hartberg, C.B., Gruber, O., Kraemer, B., Zilles, D., Donohoe, G., Kelly, S., McDonald, C., Morris, D.W.,…Turner, J.A. (2015). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547–553. https://doi.org/10.1038/mp.2015.63

Van Os, J., Pedersen, C. B., & Mortensen, P. B. (2004). Confirmation of Synergy Between Urbanicity and Familial Liability in the Causation of Psychosis. American Journal of Psychiatry, 161(12), 2312–2314. https://doi.org/10.1176/appi.ajp.161.12.2312

Veling, W., Selten, J., Susser, E., Laan, W., Mackenbach, J., Hoek, H. (2007). Discrimination and the incidence of psychotic disorders among ethnic minorities in The Netherlands, International Journal of Epidemiology, 36(4), 761–768. https://doi.org/10.1093/ije/dym085

Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., … Sebat, J. (2008). Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia. Science, 320(5875), 539–543. https://doi.org/10.1126/science.1155174

Wong, K. K., & Raine, A. (2018). Developmental Aspects of Schizotypy and Suspiciousness: a Review. Current Behavioral Neuroscience Reports, 5(1), 94-101. https://doi.org/10.1007/s40473-018-0144-y

Wortinger, L. A., Engen, K., Barth, C., Andreassen, O. A., Nordbø Jørgensen, K., & Agartz, I. (2020). Asphyxia at birth affects brain structure in patients on the schizophrenia-bipolar disorder spectrum and healthy participants. Psychological Medicine, 1–10. Advance online publication. https://doi.org/10.1017/s0033291720002779

Wu, Q., Dalman, C., Karlsson, H., Lewis, G., Osborn, D. P. J., Gardner, R., & Hayes, J. F. (2018). Childhood and Parental Asthma, Future Risk of Bipolar Disorder and Schizophrenia Spectrum Disorders: A Population-Based Cohort Study. Schizophrenia Bulletin, 45(2), 360–36. https://doi.org/10.1093/schbul/sby023

Yu, Y., Lin, Y., Takasaki, Y., Wang, C., Kimura, H., Xing, J., Ishizuka, K, Toyama, M., Kushima, I., Mori, D., Arioka, Y., Uno, Y., Shiino, T., Nakamura, Y., Okada, T., Morikawa, M., Ikeda, M., Iwata, N., Okahisa, Y.,…Ozaki, N. (2018). Rare loss of function mutations in N-methyl-d-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Translational Psychiatry, 8(1), 1-9. https://doi.org/10.1038/s41398-017-0061-y

Zarrei, M., Burton, C.L., Engchuan, W., Young, E., Higginbotham, E., Macdonald, J., Trost, B., Chan, A., Lamoureux, S., Heung, T., Mojarad, B., Kellam, B, Paton, T., Faheem , M., Miron, K., Lu, Ch., Wang, T., Samler, K., Scherer., S. (2019). A large data resource of genomic copy number variation across neurodevelopmental disorders. npj Genomic. Medicine 4, 1-13.https://doi.org/10.1038/s41525-019-0098-3

Zhang, H., Wang, D., Chen, J., Li, X., Yi, Q., & Shi, Y. (2020). Identification of SHANK2 Pathogenic Variants in a Chinese Uygur Population with Schizophrenia. Journal of Molecular Neuroscience,71, 1-8. https://doi.org/10.1007/s12031-020-01606-8

Zhuo, C. J., Hou, W. H., Jiang, D. G., Tian, H. J., Wang, L. N., Jia, F., Zhou, C. H., & Zhu, J. J. (2020). Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders. Neural regeneration research, 15(5), 817–823. https://doi.org/10.4103/1673-5374.268969

Zubin, J. & Spring, B. (1977). Vulnerability—A New View of Schizophrenia Journal of Abnormal. Psychology, 86(2), 103-126. https://doi.org/10.1037//0021-843X.86.2.103

Descargas

Publicado

2021-06-30

Cómo citar

Carrera Panchana, V. A. . (2021). Factores biopsicosociales de los trastornos del espectro esquizofrénico. Pro Sciences: Revista De Producción, Ciencias E Investigación, 5(39), 205–223. https://doi.org/10.29018/issn.2588-1000vol5iss39.2021pp205-223

Número

Sección

ARTÍCULO DE INVESTIGACIÓN